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A grid-free high-resolution spatially-adaptive vortex method for two-dimensional incom-
pressible flow in bounded domains is presented. The computational algorithm is based on
operator splitting in which convection and diffusion are handled separately every time
step. In the convection step, computational elements are convected with velocities
obtained by fast approximations of the Biot–Savart superposition with second-order
Runge–Kutta time integration scheme. Diffusion is performed using the smooth redistribu-
tion method that employs a Gaussian basis function for vorticity in the interior. Near solid
walls, the core functions are modified to conserve circulation. The no-slip boundary condi-
tion is enforced by creating of a vortex sheet that is redistributed to neighboring elements
using the redistribution method. The proposed method enables accurate and smooth
recovery of the vorticity and does not require explicit use of vortex images or occasional
re-meshing. Algorithms for reduction in computational cost by accurately removing ele-
ments in overcrowded regions and for spatial adaptivity that allows for variable core sizes
and variable element spacing are presented. Computations of flow around an impulsively
started cylinder for Reynolds number values of 1000, 3000, and 9500 are preformed to
investigate various aspects of the proposed method.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Vortex methods [10,27,11] are grid-free Lagrangian computational methods originally devised for simulating incom-
pressible fluid flow at large Reynolds number [8]. Presently, vortex methods are capable of handling complex geometries
and the associated boundary conditions as well viscous diffusion over a large range of Reynolds number. In these methods,
the vorticity field is discretized using vortex elements or ‘‘blobs”. Operator splitting of the vorticity equation enables convec-
tion and diffusion of vorticity to be numerically carried out as separate steps. Convection is simulated by transporting
conserved quantities such as circulation along particles’ trajectories, where the particles velocities are obtained using a
Biot–Savart summation over all the computational elements. Several methods have been developed for solving the diffusion
equation including random walk [8], core expansion [24,27], particle strength exchange (PSE) method [16], and redistribu-
tion methods [35,26].

Vortex methods have been successfully used to investigate the evolution of vortex sheets [7,36,18], high Reynolds num-
ber wakes [38,6], three-dimensional problems [34,21,31,17,1], non-reacting buoyant plumes [19], reacting flows in shear
layers [37], co-axial jets [30], and fires [25,19]. High resolution spatially adaptive vortex methods [22,33,3,14] have been
. All rights reserved.
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developed and used for simulation of separating flows and accurate evaluation of lift and drag. Cottet et al. [14] employed
variable vortex blobs and associated spatial adaptivity by introducing a mapping between the spatially varying physical do-
main and a uniform mapped domain. The PSE scheme for diffusion is carried out in the mapped domain. Ploumhans et al.
[33] reported results of high resolution simulations of flow over bluff bodies including a cylinder, a square and the 2-D
‘‘Apollo” capsule. The variable resolution method of [33] is based on high-order redistribution schemes in the presence of
a solid boundary in the context of the PSE scheme. The no-slip boundary condition is enforced by creating a vortex sheet
that cancels the slip at the boundary which is then accurately diffused into the flow domain in a conservative manner. Spatial
adaptivity is made possible by mapping of the redistribution onto a non-uniform grid which is coarser away from the solid
boundary. Barba et al. [3] employed radial basis function (RBF) interpolation techniques to spatial adaption of Lagrangian
vortex particles. Core spreading was employed for diffusion with core size control enforced during the adaption process.
The adaption process is essentially a mapping to a new set of particles that does not necessarily have to be uniformly spaced.
To accurately capture flow separation from a boundary as well as the associated small flow features, near-boundary diffusion
should be modeled accurately and the no-slip boundary condition should be properly enforced. Spatial adaptivity is another
feature that reduces the computational cost and yet maintains high resolution near the boundary.

Aspects of high resolution vortex methods include (i) fast (multipole) solvers [20,4], (ii) accurate diffusion using the Par-
ticle Strength Exchange (PSE) scheme [15,16] and the redistribution method [35,26], (iii) accurate enforcement of the no-slip
boundary condition for viscous flow [23,32,28,5], and (iv) spatial adaptivity of elements positions [14,12,11]. Vortex methods
primarily differ in the manner they handle the viscous sub-step. The PSE scheme approximates the diffusion operator by an
integral which is discretized among neighboring elements. PSE offers spatial adaptivity by remapping elements with variable
core size onto uniform blobs [13,14]. Error control in the PSE requires re-meshing, i.e. interpolation from a scattered set of
elements to a pre-described mesh. Barba et al. [2,3] discuss the errors incurred by re-meshing and propose a ‘‘completely
meshless” and spatially adaptive method based on radial basis function (RBF) interpolation.

This paper is organized as follows. First, the vortex method in two dimensions and the no-slip boundary condition imple-
mentation are reviewed in Section 2. The smooth redistribution method is then discussed in Section 3 for both flow elements
of variable cores as well as boundary sheet elements. Section 4 presents novel algorithms for reduction in the number of
elements and for spatial adaptivity using elements with variable cores and variable spacings. The computational algorithm
is presented in Section 5. Computing the lift and drag coefficients is discussed in Section 6. In Section 7, various parameters
and aspects of method are investigated in terms of the canonical problem of the flow over an impulsively started cylinder
and uniform flow over an oscillating cylinder. In this respect, the impact of (i) core-size elements’-spacing overlap, (ii) time
step size, and (iii) redistribution length and spatial adaptivity are discussed. Conclusion and future work are finally
presented.

2. Two-dimensional vortex method

Vortex methods employ the velocity-vorticity formulation by numerically solving the vorticity transport equation accord-
ing to the viscous splitting algorithm. In its basic form, this algorithm consists of successive handling of convection and dif-
fusion of vorticity in each time step as follows:
convection ðinviscidÞ sub-step
dx

dt
¼ 0 ð1Þ

diffusion ðviscousÞ sub-step
@x

@t
¼ mr2

x ð2Þ
The vorticity field is approximated by the superposition
xðx; tÞ ¼
XN

i¼1

CiðtÞfri
ðx;xiÞ ð3Þ
where N is the number of vortex elements and fr is the basis function of core radius r. In the convection sub-step, each ele-
ment is convected according to its velocity which, in the reference frame of a solid body moving with translational velocity
ub, is computed according to the Helmholtz decomposition
u ¼ ux þ uX þ u1 � ub þ uext ð4Þ
where ux is the vortical velocity component in free space, uX is the velocity due to the solid body rotation at an angular
speed of X; u1 is the free stream velocity, and uext is selected such that the no-through flow boundary condition at the solid
boundary is satisfied. Depending on the method of enforcing the no-through flow boundary condition, uext is the velocity
field due to either (i) a vorticity sheet ðcþÞ [23,32,28,5] at the solid boundary inside the flow field as depicted in Fig. 1a,
or (ii) a potential sheet ðq�Þ at the solid boundary inside the solid as depicted in Fig. 1b, or (iii) images of vortex elements
ðxHÞ along with a potential sheet q1� that cancels the normal component of u1 � ub at the solid boundary, as depicted in
Fig. 1c [35].

In vortex methods, satisfying the no-slip boundary condition poses a challenge since it is not explicitly a boundary con-
dition for the vorticity. In the context of the viscous splitting algorithm, the no-through flow boundary condition at solid



Fig. 1. Methods for enforcing the no-through flow boundary condition.
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boundary is enforced in the inviscid step. Next, diffusion is carried out using the smooth redistribution method. The no-slip
velocity boundary condition on solid wall is then imposed. Various approaches rely in principle on Lighthill’s model [29] in
which the no-slip boundary condition is physically manifested by creation of vorticity at the boundary such that it cancels
the slip velocity induced by the previous convection step. Rigorous treatment of this requirement focuses on replacing the
no-slip boundary condition with an equivalent vorticity boundary condition that relates vorticity production at the solid
boundary to the slip velocity. In this regard, Chorin [9] created vortex blobs at the boundary to cancel the slip velocity. In
order to overcome vorticity leakage outside the flow domain and artificial diffusion near the boundary, he later proposed
a vortex sheet method coupled with Prandtl boundary layer equations near boundary. This latter method suffers in accuracy
in regions of flow separation from the boundary. To diffuse the vortex sheets/blobs, Chorin employed random walk and re-
flected back into the flow those sheets that cross the boundary. Cottet and Koumoutsakos [11] proposed a formulation in
which the no-slip boundary condition is satisfied in the context of fractional step algorithms by replacing the no-slip
boundary condition with an equivalent vorticity flux boundary condition m@x=@n ¼ �@ðu � ŝÞ=@t. This formulation combines
viscous diffusion and the no-slip boundary condition in the sense that the generated vortex sheet lðx; t þ DtÞ satisfies the
no-slip condition of the diffused interior vorticity with zero vorticity flux at the boundary S
�1
2
lðx; t þ DtÞ þ m

Z tþDt

t

Z
S

@

@n
Gðx� x0; t � sÞlðx0; tÞdx0ds ¼ � @

@t
ðu � ŝÞ ð5Þ
Time integration of Eq. (5) was implemented in [11] using the midpoint rule and was later improved [28,33] by accounting
for more accurate time integration using Gauss quadrature and for exact contribution over nearby particle volumes.

In this paper, it is proposed to redistribute the double layer potential obtained by solving Eq. (5) to existing neighboring
elements in the interior by conserving moments of vorticity in a manner compatible with the redistribution method for dif-
fusion. Depending on the spacing of the neighboring elements, new elements may be injected near the boundary. Vorticity
leakage outside the fluid domain is avoided by a proper selection of the basis function for vorticity. The basis function chosen
for this purpose is
frðx� x0Þ ¼
1

pr2 e�
ðx�x0 Þ

2þðy�y0 Þ
2

r2 þ e�
ðx�x0 Þ

2þðyþy0 Þ
2

r2

� �
HðyÞ ð6Þ
where Hð Þ is the Heaviside function and the coordinates ðx; yÞ are chosen to be centered at the closest point on the boundary
to the element with y normal to the boundary pointing into the fluid. Such a selection guarantees that the vorticity is always
contained in the fluid domain if the local radius of curvature R of the solid boundary is larger than twice the core radius of the
vortex element. This requirement is in accordance with the requirement of using smaller boundary elements to capture lar-
ger variations of the boundary as well as the requirement to have a smaller diffusion length scale and element spacing for
accurate diffusion and convection in these regions. The accuracy of Eq. (6) in terms of conserving vorticity is assessed by con-
sidering the error in the vorticity gradient normal to a boundary element of size Ds at distance y0 from a vortex element of
core radius r. The local radius of curvature at the center of the boundary element is R. The error, given by
pr2
Z

Ds

@f
@r

� �
r¼R

Rdh ¼ �2
R
r

Ds
r

e�
R2

r2 e�
ðRþy0 Þ

2

r2 þ e�
ðR�y0 Þ

2

r2

� �
þ OðDs2Þ; ð7Þ
essentially indicates that error is negligible for R P 4r or y0 P 4r. Therefore an element near the boundary must have a core
radius less that one quarter of the local radius of curvature of the boundary. As the distance y0 from the boundary increases
beyond R, the element may have a larger core radius, which in view of the overlap requirement, allows for coarser spacing of
elements away from the boundary.

The following algorithm is employed to satisfy the no-slip boundary condition for the viscous sub-step from t to t þ Dt
starting with x0ðx; tÞ:

(1) Solve the diffusion problem (from t to t þ Dt) by satisfying the no-flux boundary condition. This is performed using the
redistribution scheme among elements of core function given by Eq. (6), as outlined in Section 3.1.
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(2) Calculate the slip velocity at the boundary.
(3) Satisfy the no-slip boundary condition by generating a diffused vortex sheet described by Eq. (5).
(4) Redistribute the vortex sheet into interior vortex elements. Diffusion of vortex sheet elements by redistribution to

interior vortex elements requires special reformulation of the redistribution method, as described in Section 3.2.
3. The smooth redistribution method

In the smooth redistribution method, diffusion of the element vorticity is represented by transferring fractions of its cir-
culation to neighboring elements in such a way that various moments of the diffusion equation are conserved. The smooth
redistribution method [26] differs from the original redistribution method [35] in assuming a smooth core function rather
than the singular Dirac-delta function for the vorticity distribution associated with an element. With sufficient overlap be-
tween neighboring elements, the smooth redistribution method allows for accurate and smooth recovery of the vorticity
field. In unbounded domains, the core function of element located at x0 is selected to be the Green function of the diffusion
equation
frðx� x0Þ ¼
1

pr2 e�
jx�x0 j

2

r2 ð8Þ
where r is the core radius of the element. Such a choice for the core function enables diffusion of an element by expanding

its core according to rðt þ DtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðtÞ2 þ 4mDt

q
. Diffusion by core expansion endows the smooth redistribution method with

extra flexibility in terms of controlling the core sizes of the elements. Note that the core size has to be large enough to guar-
antee overlap but not too large in which case the convection sub-step loses accuracy.

3.1. Diffusion of vortex elements

In this section, redistribution equations governing diffusion of a vortex element inside the flow of a bounded domain are
presented. The core function is selected to be the Green’s function of the diffusion equation in a semi-infinite domain. Essen-
tially, it is assumed that each vortex element diffuses in a semi-infinite domain whose boundary coincides with the nearest
boundary element. In the local coordinates of the boundary element (panel) nearest to the vortex element, the core function
is given by Eq. (6). The vorticity distribution for element of circulation C0, position x0, core radius r0 is then given by
xðx;x0Þ ¼ C0fr0 ðx� x0Þ ð9Þ
The objective is to diffuse the element by transferring fractions of its circulation to neighboring elements in such a manner
that the various moments of vorticity are conserved
Z 1

�1

Z 1

0
xmyn

XM

i¼1

xðx;xiÞdxdy ¼
Z 1

�1

Z 1

0
xmyn ~xðx; x0Þdxdy ð10Þ
where M is the number of neighbors involved in the redistribution process, m and n are integers that assume values of 0,1,2,
etc. and ~x is the vorticity distribution of the element after diffusion over a time step of Dt, which is given by replacing r2

0

with ~r2
0 � r2

0 þ 4mDt in Eq. (6). For mþ n 6 2, the linear system governing fractions fi of circulation C0 that must transferred
to neighbors i is
XM

i¼1

fi ¼ 1 ð11Þ

XM

i¼1

xifi ¼ x0 ð12Þ

XM

i¼1

riffiffiffiffi
p
p e�y2

i
=r2

i þ yierf
yi

ri

� �� �
fi ¼

~r0ffiffiffiffi
p
p e�y2

0=
~r0

2 þ y0erf
y0

~r0

� �
ð13Þ

XM

i¼1

r2
i

2
þ x2

i

� �
fi ¼

~r2
0

2
þ x2

0 ð14Þ

XM

i¼1

r2
i

2
þ y2

i

� �
fi ¼

~r2
0

2
þ y2

0 ð15Þ

XM

i¼1

xi
riffiffiffiffi
p
p e�y2

i
=r2

i þ yierf
yi

ri

� �� �
fi ¼ x0

~r0ffiffiffiffi
p
p e�y2

0=
~r0

2 þ y0erf
y0

~r0

� �� �
ð16Þ
For elements away from the boundary, i.e. for y0 � r0, the above system corresponds to the smooth redistribution scheme in
unbounded domains [26]. Diffusion of a vortex element using the redistribution scheme guarantees uniformity in its neighbors
spacing by injecting new elements from a set of injection candidates uniformly distributed on a circle centered at the element.
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The radius of this circle (injection radius) is equal to the desired elements spacing. This conforms with the fact that the moments
equations will yield positive fractions for the neighbors within the search radius only when this spacing criterion is met.

As an example, the following two cases are considered: diffusion of point vortex located at x0 ¼ 0; y0 ¼ 1:5 and diffusion
of point vortex located at x0 ¼ 0; y0 ¼ 1:01 in the exterior of a solid cylinder centered at ð0;0Þ of radius R ¼ 1 subject to zero
vorticity flux @x=@n ¼ 0 at the cylinder boundary. The parameters of the redistribution scheme are: injection radius offfiffiffiffiffiffiffiffiffiffiffi

6mDt
p

, search radius of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12mDt
p

, core radius of r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24mDt
p

. The number of candidates for injection is 40. The diffusion time
step is mDt ¼ 0:0001. Solving the linear system comprising the redistribution equations (11)–(16) is performed using a non-
negative least square solver with L2 accuracy of 10�6. Up to the fourth moment are conserved ðmþ n 6 4Þ leading to 15 equa-
tions. The number of unknowns is equal to the number of neighbors within the specified search radius. Fig. 2 shows vorticity
contours for the two cases at two times mt ¼ 0:01 and mt ¼ 0:05. Solid lines correspond to (A) redistribution according to the
scheme described above whereas dashed line correspond to (B) using the smooth redistribution scheme in unbounded do-
main followed by reflecting into the flow those elements that are injected inside the solid cylinder during redistribution. As
can be seen from Fig. 2, the scheme proposed in this paper provides slightly improved accuracy near the boundary. Note that
scheme (B) is derived from Shankar [35], with the difference that Shankar used point vortices instead of vortex blobs in addi-
tion to maintaining a ring of uniformly spaced vortices near the solid boundary to improve accuracy near the solid boundary.

3.2. Diffusion of vortex sheet

In this section, redistribution equations governing diffusion of a vortex sheet element of circulation C ¼ cDs are pre-
sented, where c is the vortex sheet strength and Ds is the element length. The objective in this case is to replace the sheet
element with vortex blobs. In the local coordinates ðx; yÞ of the sheet element (with y normal to boundary), the vorticity dis-
tribution of the sheet element is
νt  = 0.01t  = 0.01t
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Fig. 2. Diffusion of a point vortex at (0, 1.5): iso-vorticity contours at (a) mt ¼ 0:01 and (b) mt ¼ 0:05. Diffusion of a point vortex at (0, 1.01): iso-vorticity
contours at (c) mt ¼ 0:01 and (d) mt ¼ 0:05. Solid lines correspond to current work. Dashed lines correspond to smooth redistribution with reflection.
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xðx; tÞ ¼ C
Ds

e�
y2

4mDtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pmDt
p erf

xþ Ds=2ffiffiffiffiffiffiffiffiffiffiffi
4mDt
p

� �
� erf

x� Ds=2ffiffiffiffiffiffiffiffiffiffiffi
4mDt
p

� �� �
ð17Þ
is to be replaced with vortex blobs ðCi;ri; ðxi; yiÞÞ of vorticity distribution
xðx;xi; tÞ ¼
Ci

pr2
i

e
�ðx�xi Þ

2þðy�yiÞ
2

r2
i þ e

�ðx�xiÞ
2þðyþyi Þ

2

r2
i

" #
HðyÞ ð18Þ
where ðx; yÞ are the local coordinates centered at the boundary panel nearest to ðxi; yiÞ with y normal to panel. Conserving
zeroth, first and second moments of vorticity results in the following linear system governing fraction fi of circulation C that
must be transferred to neighboring vortex blobs i ¼ 1; . . . ;M
XM

i¼1

fi ¼ 1 ð19Þ

XM

i¼1

xifi ¼ 0 ð20Þ

XM

i¼1

riffiffiffiffi
p
p e�y2

i
=r2

i þ yierf
yi

ri

� �� �
fi ¼

ffiffiffiffiffiffiffiffiffiffiffi
4mDt
p

r
ð21Þ

XM

i¼1

r2
i

2
þ x2

i

� �
fi ¼

Ds2

12
þ 4mDt

2
ð22Þ

XM

i¼1

r2
i

2
þ y2

i

� �
fi ¼

4mDt
2

ð23Þ

XM

i¼1

xi
riffiffiffiffi
p
p e�y2

i
=r2

i þ yierf
yi

ri

� �� �
fi ¼ 0 ð24Þ
Fig. 4. Removal of elements in overcrowded regions.

Drag coefficient versus time showing impact of time step for the case of vortex sheet generation and diffusion with no convection for Re ¼ 9500.
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In redistributing a sheet element, fractions of its circulation are transferred to existing neighboring (interior) vortex ele-
ments. Similar to diffusion of an interior vortex blob, new blobs are injected in a manner that guarantees uniformity in ele-
ments’ spacing. The sheet element does not belong to the set of neighbors so that it carries zero circulation after
redistribution. If blobs are selected to be on the sheet element centered at (0,0) with y as normal, then three blobs with
r ¼

ffiffiffiffiffiffiffiffiffiffiffi
4mDt
p

are sufficient to satisfy the above system with f1 ¼ 2=3; x1 ¼ 0; y1 ¼ 0; f 2 ¼ 1=6; x2 ¼ �Ds=2; y2 ¼ 0 and
f3 ¼ 1=6; x3 ¼ Ds=2; y3 ¼ 0.

As an example, the problem of vorticity generation and diffusion for an impulsively started cylinder is considered. In this
experiment, vortex elements are diffused but not convected. Every time step, elements are diffused using the redistribution
scheme described in the previous section and the no-slip boundary condition is enforced by vorticity generation at the
boundary. The injection radius, search radius and core radius are same as in the previous example. Fig. 3 shows the drag
coefficient versus time for the case of Re ¼ 9500 for different values of the time step Dt. For small times, diffusion is dom-
inant and the elements have not yet diffused enough to experience significant convection. As a result, even though convec-
tion is not included in these computations, the drag coefficients presented in Fig. 3 are accurate at small times. Comparisons
with the drag coefficient for the flow over an impulsively started cylinder (including convection) are presented in Section 7.
t = 10t = 80

2

3

4

t = 6

t = 4t = 20

2

3

4

t = 0.2

Fig. 5. Vorticity contours for two counter-rotating vortices at t ¼ 0:2;2;4;6;8 and 10.



Fig. 8. Reduction in the number of elements and the corresponding error versus redistribution radius at t ¼ 10.

Fig. 6. CPU times consumed by the smooth redistribution scheme versus the fast multipole (N log N) convection scheme versus the number of elements.

Fig. 7. Number of elements versus time for different redistribution radii.
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4. Algorithms for reducing the number of elements and variable-core variable-spacing spatial adaptivity

The redistribution scheme for diffusion, if implemented properly, creates the minimum possible number of elements for
the desired accuracy. This is because injection of new elements on the injection circle maximizes the distance to the closest
existing neighbor. However, convection at high Reynolds number and particularly in regions of large strain rates, the unifor-
mity in elements’ spacing, which is favored but not enforced by the redistribution scheme, deteriorates. This is essentially
one of the main reasons behind the occasional re-meshing in the PSE scheme. Instead of re-meshing, it is proposed in this
paper to solve this problem by redistributing the circulations of elements within an inner search radius Ri to the neighbors
within a search radius Ro, as depicted in Fig. 4. The elements removal and strengths redistribution are performed using the
same scheme and computational algorithm employed for diffusion, which is discussed in Section 5. If Ni is the number of
elements to be removed (within circle of radius Ri) and No is the number of elements in the annulus between the circles
of radii Ro and Ri, then removal of the Ni elements must satisfy the conservation of the various moments of vorticity accord-
ing to
 Z Z

xmyn
XNiþNo

i¼1

xðx; xiÞdxdy ¼
Z Z

xmyn
XNo

i¼1

xðx;xiÞdxdyþ
Z Z

xmynxðx;x0Þdxdy
In the process shown in Fig. 4 all the elements in the inner circle are removed and a new element of circulation C0 is created
at the center of vorticity x0 of the removed elements, i.e. C0 ¼

PNi
i¼1Ci and

R R
xmynPNi

i¼1xðx;xiÞdxdy ¼
R R

xmynxðx;x0Þdxdy
for m ¼ 1; n ¼ 0 and m ¼ 0; n ¼ 1. This guarantees satisfaction of zeroth- and first-order moments resulting in minimal
modification of strength of elements in the outer circle as well as minimal injection of new elements during the process.
To illustrate the impact of the proposed algorithm, we consider the convection–diffusion problem of two counter-rotating
vortices of circulations C1 ¼ 1 and C2 ¼ �1 with initial positions of (�0.25, 0) and (0.25, 0), respectively. The initial vorticity
distributions are given by Eq. (8) with r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16mDt
p

, with m ¼ 0:001 and Dt ¼ 0:02. Simulations were performed with
Ri ¼

ffiffiffiffiffiffiffiffiffiffiffi
amDt
p

for a ¼ 0;1;2;3 and 4. For the case with a ¼ 0, merging of elements within a neighborhood radius of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5mDt
p

was performed every 5 time steps. The merging was conducted in a manner that the zeroth and first moments of vorticity
are conserved, as proposed in [35].
Fig. 9. The computational elements position at t ¼ 10 for (left) a ¼ 0 and (right) a ¼ 4.
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Vorticity contours are shown in Fig. 5 at times t ¼ 0:2;2;4;6;8 and 10, respectively. Solid line patterns correspond to po-
sitive vorticity and dashed line patterns correspond to negative vorticity. The mutual interaction between the two vortices is
such that each vortex pushes the other upwards. The CPU time consumed by the diffusion step and that consumed by the
convection step are presented in Fig. 6 versus the number of elements. Note that except for small number of elements, the
fraction of time consumed by the smooth redistribution scheme is very small compared to the time consumed by an N log N
fast multipole scheme for convection. For example, for N ¼ 24;189 elements, diffusion by redistribution consumed 2.4 CPU
seconds whereas the velocity computation consumed 63 CPU seconds. So if convection is performed using a second-order
Runge–Kutta integration scheme, then the diffusion step consumes less than 2% of the time consumed by the convec-
tion–diffusion time step.

Reduction in the number of elements for different values of a is shown in Fig. 7. In the figure, the number of element ver-
sus time is plotted for a ¼ 0;1;2;3 and 4. Note that the growth in the number of elements with time is linear, a characteristic
of the smooth redistribution scheme. The percent reduction in the number of elements versus the redistribution radius is
presented in Fig. 8 at t ¼ 10. On the same plot is shown the L2 norm of the error in the vorticity integrated over the uniform
grid employed for the vorticity distributions of Fig. 5 (for t ¼ 10). The errors were obtained in reference to the case with
a ¼ 0. For example, for a ¼ 4, we get a 40% reduction in the number of elements with an error of

D2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNx

i¼1

PNy

j¼1½xi;jða ¼ 0Þ �xi;jða ¼ 4Þ�2
q

’ 0:00011 where D is the cell size of an Nx � Ny uniform grid. The reduction in

the number of elements within the scheme described above is essentially further promoting the uniformity in element spac-
ing since it is requiring the neighborhood radius of a certain element (and thus the elements’ spacing) to be larger than
Ri ¼

ffiffiffiffiffiffiffiffiffiffiffi
amDt
p

. Fig. 9 shows the elements locations at t ¼ 10 for a ¼ 0 compared with those for the case a ¼ 4. The reduction
in the number of elements as well as the enhanced uniformity in elements’ spacing is clearly observed.

Spatial adaptivity is achieved through variable element spacing, assumed to be a given function of space hðx; yÞ. To ensure
a smooth vorticity distribution, the cores of the elements must overlap according to ri=hi ’ 2, where hi is the element spac-
ing in the neighborhood of element i. The element core size is then a function of space rðx; yÞ. In the context of the redistri-
bution scheme, the following observations regarding the constraints governing the variable-spacing variable-core scheme
are pointed out:
Fig. 11. Schematic: redistributing to elements of different core sizes.

Fig. 10. Core radii vary in increments; r2 ¼ r2
0 þmð4mDtÞ.
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� Convection may move an element from a region of low r to a region of large r or vice versa, so the spatial adaptivity
scheme should incorporate the ability to expand or shrink the core of an element accordingly. This poses a challenge since
core expansion entails diffusion; expanding an element core from r1 to r2 is essentially diffusing the element over a time
period of ðr2

2 � r2
1Þ=4m. If this time period is an integer multiple of the time step, ðr2

2 � r2
1Þ=4m ¼ mDt, then expanding the

core from r1 to r2 could be achieved by core expansion over m time steps. But if m is too large, then the element may have
moved during these m time steps to a position with different core size requirement. Noting that having m large implies
that the desired core size variation in space is more than can be physically manifested by diffusion, the solution to this
problem is to have the variation of rðxÞ such that the length lr over which r2 varies by 4mDt, to be larger than the distance
traveled by an element at x over Dt, i.e. lr > jujDt. The element spacing h, however, is chosen to also satisfy the same
requirement, i.e. h > jujDt. Therefore, the condition lr 	 h must be satisfied. As for core reduction, reducing a core from
r1 to r2 essentially entails backward diffusion over a time period of ðr2

2 � r2
1Þ=4m. If this period is an integer multiple

of the convection time step, then reducing the core from r1 to r2 can be achieved by setting the element core to r2
Fig. 13. Flowchart of the algorithm proposed for spatial adaptivity.

Fig. 12. L2 norm of the integrated point-wise error in vorticity versus rinj=r0.



Fig. 14. Elements and vorticity contours obtained by redistribution (dashed) overlaid on exact solution. Top: diffusion using single core r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24mDt
p

single
spacing h 	

ffiffiffiffiffiffiffiffiffiffiffi
6mDt
p

. Center: diffusion using variable-core variable-spacing algorithm. Redistribution with fixed cores. Bottom: diffusion using variable-core
variable-spacing algorithm. Redistribution with variables cores.

502 I. Lakkis, A. Ghoniem / Journal of Computational Physics 228 (2009) 491–515



I. Lakkis, A. Ghoniem / Journal of Computational Physics 228 (2009) 491–515 503
and then diffusing the element by redistribution over m steps. In addition to the fact that this step adds new challenges to
the redistribution scheme, as discussed below, it greatly increases the complexity and computational cost of the diffusion
scheme. This is yet another reason for setting m ¼ 1. So, to summarize, the square of the core size (r2) must vary by 
4mDt
over a distance lr 	 h 	 r=2. Increasing the core size is done by core expansion r2

2 ¼ r2
1 þ 4mDt over the next time step.

Reducing the core size is done by setting r2
2 ¼ r2

1 � 4mDt and then redistribute over Dt. Fig. 10 shows elements distribu-
tion with variable elements spacing and core radii. The spacing is smallest at the centers of the circular patches and it
increases with the shorter distance from the centers according to h ’ r=2, with r2 ¼ r2

0 þmð4mDtÞ, where
r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24mDt
p

is the core radius in the neighborhood of the centers of the circular patches. The spacing between elements
at the outer edge, for example, is 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13mDt
p

, which is 	 1:5 times the spacing between elements at the center.
� The redistribution scheme must be applicable to elements of different core sizes, i.e. the linear system (10) must have a

positive solution, to within a desired accuracy, when the neighbors of an element have different core sizes. Depending on
the neighbors location and sizes of their cores, the linear system (10) corresponding to redistribution to a particular order,
may or may not have a solution. Even if the redistribution equations have a solution, the solution may not be point-wise
accurate, though it conserves moments of vorticity up to the specified order. To shed more light on the impact of redis-
tributing with variable cores on point-wise accuracy, the case of diffusing over Dt an element with circulation C0 ¼ 1,
position x0 ¼ 0 and y0 ¼ 0, and core size r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24mDt
p

by redistributing its strength to 6 neighbors equally spaced on
the injection circle of radius

ffiffiffiffiffiffiffiffiffiffiffi
6mDt
p

is considered. All of the neighbors have cores sizes equal to r0 except one with a core
size of rinj–r0, as depicted in Fig. 11. Fig. 12 shows the L2 norm of the error in vorticity integrated over a uniform grid as a
function of the ratio rinj=r0. As can be seen form the figure, the error is minimum when rinj ¼ r0. For rinj < r0, the error
increases rapidly for smaller rinj whereas for rinj > r, the error increases at a smaller slope and reaches an asymptotic
value. One may then conclude that redistributing to neighbors of smaller cores is to be avoided, as it introduces larger
errors, whereas redistributing to elements of larger cores is less erroneous. If the core radii are such that their squares
Fig. 16. Vorticity contours for (i) r=h ¼
ffiffiffiffiffiffiffiffi
2=3

p
(dashed lines) and (ii)

ffiffiffiffiffiffiffiffi
2=3

p
6 r 6 3 (solid lines). (a) Re ¼ 3000; t ¼ 5 and (b) Re ¼ 9500; t ¼ 3.

Fig. 15. Number of elements (solid lines) and accuracy (dashed lines) of the variable-spacing variable-core algorithms. The plots with diamonds correspond
to redistribution with fixed cores. Plots with circles correspond to variable-core variable-spacing with redistribution with fixed cores. Plot with the +
symbol correspond to variable-core variable-spacing with redistribution with variable cores.



Fig. 17. Comparison of time evolution of the drag coefficient with [35] and [22] for Re ¼ 3000.

Fig. 18. Comparison of time evolution of the drag coefficient with [35,39] and [22] for Re ¼ 9500.

Fig. 19. Impact of core size on time evolution of drag coefficient.
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are integer multiples of 4mDt and these squares vary by 
4mDt as proposed above, then even redistributing to larger cores
can be avoided and replaced by redistributing to new elements of core size r0 positioned on top of the existing neighbors

with core sizes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0 þ 4mDt
q

. In the next diffusion step, the elements with core size r0 located in regions where the desired

core size is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0 þ 4mDt
q

are simply diffused by core expansion.

Based on the previous discussion, spatial adaptivity is rendered possible by adopting a variable-spacing variable-core
algorithm that follows the recommendations made above. A flowchart of the algorithm is presented in Fig. 13. The square
of the elements core sizes ðr2Þ must vary by 
4mDt over a distance larger than the local average element spacing
h 	 r=2. Diffusion by redistribution is done among those neighbors that only share the same core size. Injection of new ele-
ments is such that priority is given to positions coinciding with neighboring elements with different cores. After diffusion, all
Fig. 20. Vorticity fields for Re ¼ 9500 at t ¼ 1;2;3 and 4. Left: Dt ¼ 0:01;r ¼
ffiffiffiffiffiffiffiffiffiffiffi
4mDt
p

. Right: Dt ¼ 0:01, r variable.
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the elements are scanned to check whether their core radii are according to the desired distribution. If not, then increasing
the core size is done by core expansion r2

2 ¼ r2
1 þ 4mDt over the next time step, whereas reducing the core size is done by

setting r2
2 ¼ r2

1 � 4mDt and then redistribute over Dt.
As an example, diffusion of two vortices is considered. The circulations of the vortices are C1 ¼ 1 and C2 ¼ 1 and their

initial positions are (�0.25, 0) and (0.25, 0), respectively. The initial vorticity distributions are given by Eq. (8) with
r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24mDt
p

, with m ¼ 0:001 and Dt ¼ 0:01. The following three scenarios are compared: (i) diffusion with fixed cores,
r ¼ r0, (ii) variable-core variable-spacing with diffusion among fixed cores followed by core size correction according to
the algorithm of Fig. 13, and (iii) variable-core variable-spacing with diffusion among different cores. Comparisons between
these scenario are presented in Fig. 14 in terms of the computational elements and the vorticity contours overlaid on top of
the exact solution. Spatial adaptivity is apparent for scenarios (ii) and (iii) with both cases showing significantly less ele-
ments at no cost (case iii) or little cost (case ii) in accuracy of point-wise vorticity as observed from vorticity contours. Reduc-
tion in the number of elements as well as the corresponding L2 norm of the integrated point-wise vorticity error for the three
cases are plotted in Fig. 15 versus time. Once again, the peculiar behavior of the error decreasing in time is observed with
scenario (iii) having similar accuracy to scenario (i) with 40 less elements. As follows from the discussion above, redistribu-
tion with variable core is not as accurate, though it yields the minimum number of elements among the scenarios
considered.
Fig. 21. Vorticity fields at t ¼ 3 for Re ¼ 9500.

Fig. 22. Tangential velocity versus radial distance at t ¼ 0:5 at different angles. Dashed lines are second-order boundary layer theory. Filled circles are
results from Shankar [35]. Solid lines are present solutions for r=h ¼

ffiffiffiffiffiffiffiffi
2=3

p
and empty circles are present solutions for variable cores

ffiffiffiffiffiffiffiffi
2=3

p
6 r=h 6 3.
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5. Computational algorithm

The computational algorithm is based on Strang operator splitting in which, during a time step Dt, vortex elements are
first diffused over Dt=2, then convected over Dt, and then diffused again over Dt=2. Each diffusion sub-step is performed
using the smooth redistribution method. Convection is performed using a second-order Runge–Kutta integration scheme.
The no-slip boundary condition is enforced in conjunction with each diffusion step as discussed in Section 2. The algorithm
is outlined as follows:

(1) Viscous sub-step (diffusion + no-slip) from t to t þ Dt=2 as outlined at the end of Section 2.
(2) Convection – Runge–Kutta step 1: convect elements over the half time step according to
Fig. 23.
circles:

Fig. 24
integer
xi t þ Dt
2

� �
¼ xiðtÞ þ

Dt
2

uiðtÞ ð25Þ
(3) Convection – Runge–Kutta step 2: convect elements according to
xiðt þ DtÞ ¼ xiðtÞ þ
Dt
2

uiðtÞ þ ui t þ Dt
2

� �� �
ð26Þ
(4) Viscous sub-step (diffusion + no-slip) from t þ Dt=2 to t þ Dt as outlined at the end of Section 2.
Radial velocity profiles along the rear symmetry axis at t ¼ 0:5;1;1:5;2;2:5;3 and 4. Dashed lines: Dt ¼ 0:01;r ¼
ffiffiffiffiffiffiffiffiffiffiffi
4mDt
p

. Black filled and empty
Dt ¼ 0:01;r variable. Grey filled circles: Shankar [35]. Solid line: Kruse and Fischer [39].

. Impact of time step on time evolution of the drag coefficient for the case Re ¼ 3000. All cases have variable cores r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mmDt
p

for m positive
. All cases also have the same redistribution fraction a ¼ 4.
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Tables were constructed to provide the velocity due to elements that are a distance less than or equal to 4r from the solid
boundary. For elements that are a distance larger than 4r from the boundary, the vorticity field is approximated by the un-
bounded core function (Eq. (8)). A fast multipole algorithm of order N log N was employed to compute the velocity field with
direct summations included for neighboring elements.

6. Lift and drag coefficients

The force acting on the solid body may be obtained by taking a control volume that contains both the fluid and the solid
body and that extends to infinity. The control volume is selected to move with the solid body so that the integral form of the
conservation of momentum is
Fig. 26.
Dt ¼ 0:
�Fb þMb
dUb

dt
¼ d

dt

Z
C:V :

qudxþ
Z

C:S:
quu � n̂dS ð27Þ
Noting that the momentum flux term is zero since at infinity the velocity is U1 � Ub where Ub is the velocity of the body, so
that
�Fb þMb
dUb

dt
¼ d

dt

Z
C:V :

quxdx ð28Þ
The force on the body may be expressed in terms of the vorticity field as
Fb ¼ �
d
dt

Z
C:V :

qðx� xÞdxþMb
dUb

dt
ð29Þ
Fig. 25. Impact of time step on time evolution of the drag coefficient for Re ¼ 9500. r ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mmDt
p

where m varies from 4 to 24.

Impact of time step on the tangential velocity profile (at t ¼ 0:5) across the boundary layer at different angles. Solid lines: Dt ¼ 0:01, filled circles
02, empty circles Dt ¼ 0:05.
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Noting that xðxÞ ¼
PN

i¼1Cifri
ðxi;xÞ, then for two-dimensional flows around bodies moving at constant velocity the lift and

drag are
Fig. 27
Dt ¼ 0:
Fd ¼
d
dt

XN

i¼1

Ci

Z
C:V :

yfri
ðxi;xÞdx ð30Þ
and
Fl ¼ �
d
dt

XN

i¼1

Ci

Z
C:V :

xfri
ðxi; xÞdx ð31Þ
where the density is set to unity. The integrals in the lift and drag coefficients are recognized as the first y and x moments of
vorticity, respectively, which for a single element, are provided by the right-hand sides of Eqs. (13) and (12), respectively. The
lift and drag coefficients for the impulsively started flow over a cylinder discussed in the next section are Cl ¼ Fl=U2

1R and
Cd ¼ Fd=U2

1R, respectively, where R is the cylinder radius.

7. Computations of flow over an impulsively started cylinder

In this section, the impact of various parameters on the accuracy and computational cost of the method are investigated.
For this purpose, the canonical problem of the flow over a cylinder is considered. Accuracy of the methodology presented in
this paper is investigated by comparing the drag coefficient, vorticity distribution, and velocity profiles in the boundary layer
with computational results reported by the redistribution method [35], the PSE method [22], and the Spectral Element Meth-
od [39]. Cost of the algorithm is reported in terms of the time evolution of the number of computational elements. The
parameters investigated are (i) core-size elements spacing overlap, (ii) time step, and (iii) redistribution fraction a and spa-
tial adaptivity. Tests are conducted primarily for the cases of Re ¼ 3000 and Re ¼ 9500. The performance of the spatial adap-
tivity algorithm is investigated for the case of Re ¼ 1000 with the cylinder undergoing forced angular oscillations.
. Impact of time step on the radial velocity profile along the rear symmetry axis. Solid lines: Dt ¼ 0:01, filled circles Dt ¼ 0:02, empty circles
04.

Fig. 28. Comparison of the number of elements vs time for different values of the time step with [22]. Left: Re ¼ 3000, Right: Re ¼ 9500.
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7.1. The impact of core size – elements spacing overlap

The overlap ratio ðr=hÞ, the ratio of the core size r to average elements spacing h, plays an important role in the behavior
of the smooth redistribution method [26]. Overlap ratios satisfying r=h < 1 introduce smaller errors due to convection of
elements and larger errors in point-wise vorticity, while larger values, r=h > 1, introduce smooth point-wise vorticity dis-
tribution at the expense of larger errors introduced by elements convection. The redistribution method, in its original form
[35], dealt with point vortices x ¼ Cidðx� xiÞdðy� yiÞ, for which case the overlap ratio r=h ¼ 0. In their simulations of flow
over a cylinder, Shankar et al. [35] enforced the no-slip boundary condition by creating a vortex sheet of strength �2u � ŝ and
replacing the vortex sheet by a set of point vortices equally spaced on the boundary so that each element is created with a
circulation of �2u � ŝDs, where Ds is the elements spacing. The simulations presented in [35] yielded accurate results for the
drag coefficient, vorticity field, and boundary layer velocity profiles. In these simulations, the vorticity field is represented as
a set of delta functions (desingularized for convection), and evaluation of the point-wise vorticity field is carried out using an
infinite-order smoothing function. Redistribution using Gaussian cores was later presented in [26] and values of r=h 	 2
proved to be an optimal compromise. The scheme proposed for satisfying the no-slip boundary condition creates elements
at the boundary with cores r ¼

ffiffiffiffiffiffiffiffiffiffiffi
4mDt
p

. For an average element spacing �h ¼
ffiffiffiffiffiffiffiffiffiffiffi
6mDt
p

, the corresponding overlap ratio, 	
ffiffiffiffiffiffiffiffi
2=3

p
,

is not large enough for the point-wise vorticity to be smooth. Fig. 16 shows the vorticity contours for the flow over an impul-
sively started cylinder at t ¼ 5 for the case Re ¼ 3000 and t ¼ 3 for the case Re ¼ 9500. For an overlap ratio of 	

ffiffiffiffiffiffiffiffi
2=3

p
, the

vorticity contours are noisy. On the same figure are shown vorticity contours with core sizes that increase from r ¼
ffiffiffiffiffiffiffiffiffiffiffi
4mDt
p

at
the boundary to r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
54mDt
p

at the farthest point from the cylinder. For this overlap range of ½
ffiffiffiffiffiffiffiffi
2=3

p
;3� the vorticity contours

are much smoother than those for the case of r=h ¼
ffiffiffiffiffiffiffiffi
2=3

p
.

The drag coefficient versus time for both cases, compared with those presented by the redistribution method [35], spec-
tral element method [39] and the particle strength exchange method [22]), are shown in Figs. 17 and 18. Both cases are in
good agreement with [35,39] and [22], with the case of r=h ¼

ffiffiffiffiffiffiffiffi
2=3

p
slightly more accurate at later times due to the smaller

error introduced by convecting elements with finite cores by moving their centers.
If on the other hand, a constant overlap ratio of r=h ¼ 2 is desired everywhere, then the elements injected at the bound-

ary are diffused by core expansion until their core size reaches
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24mDt
p

after which they are diffused by redistribution, as
Fig. 29. Impact of redistribution length
ffiffiffiffiffiffiffiffiffiffiffi
amDt
p

on time evolution of drag coefficient for Re ¼ 9500. Dt ¼ 0:02;r ¼
ffiffiffiffiffiffiffiffiffiffiffi
4mDt
p

.

Fig. 30. Impact of redistribution fraction a on the number of elements and error in vorticity for the case Re ¼ 9500 at t ¼ 3.
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shown in inset of Fig. 19 (ratio r=h is not to scale in the figure). In this case, the drag coefficient deviates significantly from
the correct value at and beyond separation (for t P 3) as shown in Fig. 19 for the case Re ¼ 3000. This is expected because
larger cores introduce larger errors in convection that propagate in time and more importantly because elements with large
cores near the boundary do not see the boundary as locally semi-infinite, which is required by the redistribution scheme for
diffusion near a solid boundary as discussed in Section 3.1. For the case of Re ¼ 9500, vorticity fields at t ¼ 1;2;3 and 4 are
presented in Fig. 20. Comparison with [35,39] and [22] at t ¼ 3 is shown in Fig. 21.

Tangential velocity profiles across the boundary layer (at t ¼ 0:5) are presented in Fig. 22 at angles 30�, 60�, 90�, 120� and
150� from the front symmetry line. On the same plot are shown results from Shankar [35] (filled circles) and predictions of
second-order boundary layer theory (dashed lines). Comparison of radial velocity profiles along the rear symmetry axis at
different times is shown in Fig. 23.

7.2. Impact of time step

The impact of the time step on the time evolution of the drag coefficient is presented in Figs. 24 and 25 for the cases of
Re ¼ 3000 and 9500, respectively. The three time steps considered ðDt ¼ 0:01;0:02; and 0:04Þ are again compared with re-
sults from [35] and [22]. The variable-cores variable-spacing algorithm has been employed in all the cases so that elements
near the boundary have cores of size

ffiffiffiffiffiffiffiffiffiffiffi
4mDt
p

with the core size and elements spacing increasing for elements farther from the
boundary. For larger time steps, errors in the drag coefficient are observed and in particular after the point of separation
(t > 3 for Re ¼ 3000 and t > 2 for Re ¼ 9500). This is attributed primarily to the fact that elements near the boundary with
core sizes

ffiffiffiffiffiffiffiffiffiffiffi
4mDt
p

see the boundary as locally semi-infinite becomes less accurate as Dt increases, as discussed in the previous
section. Impact of time step on the tangential velocity profile across the boundary layer at various angular positions for
Re ¼ 9500 at t ¼ 0:5 is shown in Fig. 26. The radial velocity profiles along the rear symmetry axis at t ¼ 3 and 4 are pre-
sented in Fig. 27 for the different times steps. The significant savings in computational cost the present method offers are
expressed in Fig. 28, where it is shown that the number of elements is considerably less than that of the PSE scheme
Fig. 31. Impact of redistribution length
ffiffiffiffiffiffiffiffiffiffiffi
amDt
p

on time evolution of drag coefficient for Re ¼ 3000. Dt ¼ 0:02, r ¼
ffiffiffiffiffiffiffiffiffiffiffi
4mDt
p

.

Fig. 32. Impact of redistribution length
ffiffiffiffiffiffiffiffiffiffiffi
amDt
p

on radial velocity profile along the rear symmetry line at t ¼ 10 for Re ¼ 3000. Dt ¼ 0:02, r ¼
ffiffiffiffiffiffiffiffiffiffiffi
4mDt
p

.
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[22]. For example, for Re ¼ 3000 at t ¼ 5, the number of elements is 80,000 whereas the number of elements is more than
300,000 using the PSE scheme for the same time step.

7.3. Impact of redistribution length and spatial adaptivity

The number of elements can be significantly reduced by invoking the variable-core variable-spacing algorithm for spatial
adaptivity. As discussed in Section 4, the algorithm removes elements in overcrowded regions by replacing all elements
within a redistribution length

ffiffiffiffiffiffiffiffiffiffiffi
amDt
p

by a single element while conserving the various moments of vorticity by involving
neighboring elements in the redistribution process. This results in a significant reduction in the number of elements with
Fig. 33. Drag and lift coefficients. Solid lines: fixed core-fixed spacing. Dashed lines: variable core-variable spacing.

Fig. 34. Impact of spatial adaptivity on the time evolution of the number of elements.

Fig. 35. Elements positions at t ¼ 15 for the variable core-variable spacing case.
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little loss in accuracy. Fig. 29 shows that increasing the redistribution fraction a from 0.05) to 1 results in virtually no change
in the drag coefficient for the case Re ¼ 9500. The corresponding impact of increasing the redistribution fraction on the num-
ber of elements and accuracy are presented in Fig. 30. The accuracy is measured in terms of the L2 norms of error in vorticity

integrated over the computational domain
RR
ðx�x�Þ2dxdy

� �1=2
, where x� is a reference vorticity field corresponding to

Dt ¼ 0:01. The figure shows that for a 6 1, increasing a results in dramatic reduction in number of elements at minimal loss
in accuracy. For example, increasing a ¼ 0:05 to a ¼ 1, the number of elements is reduced from 165,000 elements to less
than 100,000 elements with very little loss in accuracy (from 0.0149 to 0.0154).

Fig. 31 shows the impact of increasing a to 2 on the drag coefficient over a longer period time for the case Re ¼ 3000.
While the drag coefficient history is virtually identical, the number of elements dropped from 268,793 to 140,173. The radial
velocity profiles along the rear symmetry line at t ¼ 10, shown in Fig. 32 for the two cases, further proves that this significant
reduction in number of elements comes at virtually no cost.

To investigate the impact of spatial adaptivity over longer times, the case of uniform flow over an oscillating cylinder is
considered. The Reynolds number based on the free stream velocity is Re ¼ 1000 and the cylinder is undergoing angular
oscillations with angular velocity X ¼ Xmax sin 2pft, where XðtÞ is the angular velocity at time t, and Xmax ¼ 1 and
f ¼ 0:25 are, respectively, the amplitude and frequency of oscillations. Two simulations were conducted for a duration of
a few oscillation periods, one with fixed core size r ¼

ffiffiffiffiffiffiffiffiffiffiffi
4mDt
p

and injection radius (average elements spacing) of
ffiffiffiffiffiffiffiffiffiffiffi
6mDt
p

,
and the second with variable core size r ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
mmDt
p

, where m increases from 4 at the solid boundary to a maximum of
384 away from the solid boundary. The corresponding injection radius is r=2 for m > 24 and

ffiffiffiffiffiffiffiffiffiffiffi
6mDt
p

for m < 24. The lift
and drag coefficients time evolution for the two cases presented in Fig. 33 shows that the chosen spatial adaptivity is capable
of predicting these coefficients over the time period to an acceptable accuracy. The reduction in number of elements offered
by spatial adaptivity is presented in Fig. 34 in terms of time evolution of the number of elements for the two cases consid-
ered. The elements positions at t ¼ 15 are depicted in Fig. 35 for the case with spatial adaptivity. The parameters were cho-
sen such that the average elements spacing increases from �hmin ¼ h0=

ffiffiffi
2
p

near the solid wall to a maximum of �hmax ¼ 4h0
Fig. 36. Vorticity contours at t ¼ 5;10 and 15. Solid lines: fixed core-fixed spacing. Dashed lines: variable core-variable spacing.
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away from the boundary ðh0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
6mDt
p

Þ. The cost of such significant reduction in the number of elements, and in particular,
increasing the elements spacing by a factor of 4

ffiffiffi
2
p

, is some loss in accuracy in the vorticity field away from the boundary, as
seen in Fig. 36, where the vorticity field is shown in terms of vorticity contours at t ¼ 5;10 and 15 for the case with spatial
adaptivity and that without spatial adaptivity. Tradeoff between accuracy and cost is made possible by choice of the max-
imum to minimum average elements spacing ratio �hmax=

�h min, and by the distance over which this variation takes place.

8. Conclusion

Novel contributions to a high-resolution spatially adaptive 2D vortex method in bounded domains are presented. Redis-
tribution equations governing diffusion of vortex elements near the solid boundary are presented in Section 3.1 so that the
no-flux boundary condition of the vorticity at solid boundary is approximately satisfied by the choice of the core function of
Eq. (6). The smooth redistribution scheme is extended to accurately satisfy the no-slip boundary condition. In this respect the
no-slip boundary condition is enforced by creation of a vortex sheet that is subsequently removed by redistributing its
strength to neighboring element using the redistribution scheme of Section 3.2. Computational cost is considerably reduced
by removal of elements within inner search radius

ffiffiffiffiffiffiffiffiffiffiffi
amDt
p

which virtually no loss in accuracy for a 6 1. The variable-core
variable-spacing algorithm (Section 4) endows the method with spatial adaptivity taking advantage of core expansion
and the smooth redistribution methods for diffusion. Spatial adaptivity offers a tradeoff between accuracy and cost by con-
trolling rates of increase of the elements core size and spacing as a function of distance from the solid boundary.
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